Abstract

Zygomatic implant technology has been regarded as an alternative treatment to massive grafting surgery in the severe atrophic maxillary. Nowadays, the assistant method with a real-time surgical navigation has been applied to reduce the risks of zygomatic implant placement. However, the accuracy of the complex operation is highly dependent on the experience of the surgeon. In order to avoid disadvantages of traditional surgical navigation systems, a novel surgical robot system for the zygomatic implant placement has been designed and developed. Firstly, the drilling trajectory of the zygomatic implant placement is designed through the pre-operative planning system. Secondly, the real-time positions of the surgical instruments are constantly updated with the guidance of the optical tracker. Finally, through a coordinate transformation algorithm, the drilling performance can be conducted with the control of a six degree of freedom robot. In order to evaluate the accuracy of the robot, phantom experiments had been carried out. The angle, entry point and exit point deviation of the robotic system are 1.52 ± 0.58°, 0.79 ± 0.19 mm, and 1.49 ± 0.48 mm, respectively. Meanwhile, a comparison between the robotic and manual operation demonstrates that the use of the surgical robot system for the zygomatic implant placement can improve the accuracy of the operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.