Abstract

The use of sludge fermentative short-chain fatty acids (SCFA) as an additional carbon source of biological nutrient removal (BNR) has drawn much attention recently as it can reuse sludge organics, reduce waste activated sludge production, and improve BNR performance. Our previous laboratory study had shown that the SCFA production was significantly enhanced by controlling sludge fermentation at pH 10 with NaOH. This paper focused on a pilot-scale study of alkaline fermentation of waste activated sludge, separation of the fermentation liquid from the alkaline fermentation system, and application of the fermentation liquid to improve municipal biological nitrogen and phosphorus removal. NaOH and Ca(OH)(2) were used respectively to adjust the alkaline fermentation pH, and their effects on sludge fermentation and fermentation liquid separation were compared. The results showed that the use of Ca(OH)(2) had almost the same effect on SCFA production improvement and sludge volatile suspended solids reduction as that of NaOH, but it exhibited better sludge dewatering, lower chemical costs, and higher fermentation liquid recovery efficiency. When the fermentation liquids, adjusted with Ca(OH)(2) and NaOH respectively, were added continuously to an anaerobic-anoxic-aerobic municipal wastewater BNR system, both the nitrogen and phosphorus removals, compared with the control, were improved to the same levels. This was attributed to the increase of not only influent COD but also denitrifying phosphorus removal capability. It seems that the use of Ca(OH)(2) to control sludge fermentation at pH 10 for efficiently producing a carbon source for BNR is feasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call