Abstract

The effects of the advanced oxidation process (AOP) of ultraviolet radiation in combination with hydrogen peroxide (UV/H2O2) on the structure and biodegradability of dissolved natural organic matter (NOM) and on the formation of disinfection by-products (DBPs) through the post-UV/H2O2 chlorination were investigated using UV reactors equipped with either low-pressure amalgam lamps or medium-pressure mercury vapour lamps. With electrical energy doses and H2O2 concentrations typically applied in full-scale UV systems for water remediation, the UV/H2O2 AOP partially oxidized NOM, reducing its degree of aromaticity and leading to an increase in the level of biodegradable species. Also, when combined with a downstream biological activated carbon (BAC) filter, UV/H2O2 AOP reduced the formation of DBPs by up to 60% for trihalomethanes and 75% for haloacetic acids. Biological activated carbon was also shown to effectively remove biodegradable by-products and residual H2O2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call