Abstract
This study shed light on removing atrazine from pesticide production wastewater using a pilot-scale UV/O3/ultrasound flow-through system. A significant quadratic polynomial prediction model with an adjusted R2 of 0.90 was obtained from central composite design with response surface methodology. The optimal atrazine removal rate (97.68%) was obtained at the conditions of 75 W UV power, 10.75 g h−1 O3 flow rate and 142.5 W ultrasound power. A Monte Carlo simulation aided artificial neural networks model was further developed to quantify the importance of O3 flow rate (40%), UV power (30%) and ultrasound power (30%). Their individual and interaction effects were also discussed in terms of reaction kinetics. UV and ultrasound could both enhance the decomposition of O3 and promote hydroxyl radical (OH·) formation. Nonetheless, the dose of O3 was the dominant factor and must be optimized because excess O3 can react with OH·, thereby reducing the rate of atrazine degradation. The presence of other organic compounds in the background matrix appreciably inhibited the degradation of atrazine, while the effects of Cl−, CO32− and HCO3− were comparatively negligible. It was concluded that the optimization of system performance using response surface methodology and neural networks would be beneficial for scaling up the treatment by UV/O3/ultrasound at industrial level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.