Abstract

Iron powder, Kaolin powder and CuSO4∙5H2O were employed as the main materials for the pilot-scale production of Fe/Cu catalytic- ceramic-filler (CCF) by way of wet type replacement-thermo-solidification. The physical properties, half-life, microstructure, removal rate of nitrobenzene compounds and the biodegradability-improvement of military chemical factory comprehensive wastewater were tested in comparison with commercial Fe/C ceramic-filler (CF). Catalytic micro-electrolysis bed reactors (CBRs) designed as pretreatment process and BAFs (Biological Aerated Filters) were utilized in a 90 days field pilot-scale test at last. The results showed the characteristics of optimum CCF were: 1150 kg/m3 of bulk density, 1700 kg/m3 of grain density, lower than 3.5% of shrinking ratio, 3.5% of 24 h water absorption, 6.0 Mpa of numerical tube pressure, 0.99 acid-resistance softening co-efficiency and 893.55 days of half-life. 25% addition of Fe with 1% of copper plating rate was efficient for the removal of nitrobenzene compounds and significant in promoting the biodegradability of military chemical factory comprehensive wastewater. The two-stage design of CBRs and BAFs showed high dependability and stability for the practical engineering application.

Highlights

  • As the chemical industry developed rapidly in China, the consumption of nitrobenzene compounds which was widely utilized as the raw materials especially in pharmaceutical, perfume, military and dye industries dramatically increased

  • The basic properties such as bulk density, grain density, 24 h water absorption, shrinking ratio, numerical tube pressure and acid-resistance softening co-efficiency were tested during the pilot-scale production of CCF

  • NaHCO3 decomposes and releases CO2 and H2 O at 600 ◦ C, and the generated gases would be captured by the melting Kaolin powder which prevented the shrink of raw pellets before the addition of iron lower than 25%

Read more

Summary

Introduction

As the chemical industry developed rapidly in China, the consumption of nitrobenzene compounds which was widely utilized as the raw materials especially in pharmaceutical, perfume, military and dye industries dramatically increased. The discharge amount of refractory wastewater which abounds of nitrobenzene compounds grows sharply as well [1,2,3]. Nitrobenzene compounds wastewater can make great damage to the environment [4] which is stable and hard to be decomposed under national conditions. The toxicity of the nitrobenzene compounds in wastewater lower down the biodegradability, and harmful to the survival of creatures or microorganism. As shown by [5,6,7], fishes will die when the concentration of trinitrotoluene is higher than 1 mg/L, and aerobic microbes in active sludge will be inhibited when the concentration of tri-nitrobenzene compounds over 5–10 mg/L

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.