Abstract

Whey protein isolate (WPI) solutions (100 g L−1 protein) were subjected to a heat-treatment of 80 °C for 10 min. Unheated and heat-treated WPI solutions were hydrolysed with Corolase® PP at pilot-scale to either 5 or 10% degree of hydrolysis (DH). Hydrolysates were subsequently processed via cascade membrane fractionation using 0.14 μm, and 30, 10, 5 and 1 kDa cut-off membranes. The compositional and molecular mass distribution profiles of the substrate hydrolysates and membrane processed fractions were determined. Whole and fractionated hydrolysates were assayed for both angiotensin-I-converting enzyme (ACE) inhibitory activity and ferrous chelating capabilities. A strong positive correlation (P < 0.01) was established between the average molecular mass of the test samples and the concentration needed to chelate 50% of the iron (CC50) in solution. The lowest ACE inhibition concentration (IC50 = 0.23 g L−1 protein) was determined for the 1 kDa permeate of the heat-treated 10% DH hydrolysate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call