Abstract

ABSTRACTThe efficacy of electrocoagulation at a pilot-scale as an alternative drinking water treatment technology to conventional coagulation is explored. A novel reactor was integrated into a pilot plant at the surface water supply of a small, remote community. Using iron anodes, the effect of metal loading (ML), current density and inter-electrode gap on the reduction of natural organic matter (NOM) was studied. Dissolved organics were characterized by large fractions of low molecular weight (<750 Da) hydrophilic carbon structures with lower charge density. A greater reduction in UV254 was yielded compared to dissolved organic carbon, indicating better removal of larger molecular weight fractions of NOM. As ML dosages increased from 27.8 to 60.8 mg/L, specific ultraviolet absorbance decreased from 1.92 ± 0.14 to 1.60 ± 0.10 L/m•mg respectively, from an initial raw water value of 2.21 L/m•mg. No clear trend was observed for the effect of current density and inter-electrode gap for NOM, however ML was the primary variable dictating the process’ effectiveness. Energy requirements were observed to vary greatly and were highly dependent on ML, current density and inter-electrode gap; variables that all effect the operating potential and resistance. In general, conditions that yielded the greatest reduction of NOM, a 1 mm gap and 4-cell configuration, had energy requirements between 0.480 and 0.602 kWh/m3 of water treated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call