Abstract

Cheese whey was concentrated to a concentration factor of 2.7 in a pilot scale forward osmosis filtration system, using a commercial cellulose triacetate membrane in a spiral-wound configuration. The whey was concentrated in a batch mode, using sodium chloride as the draw solution at initial osmotic pressures of 53–75 bar. During the process, flux was shown to reduce due to the simultaneous decrease in the bulk osmotic pressure of the draw solution, increase in the bulk osmotic pressure of the whey and the effect of concentration polarisation on both sides of the membrane. The flux is known to be driven by the effective osmotic pressures of whey and the draw solution on the surface of the membrane active layer. A short-cut approach that requires minimal information in advance about the osmotic pressure of whey and the geometry of the filtration system was implemented, enabling the determination of these effective osmotic pressures. The results obtained were shown to be in agreement with the fundamental forward osmosis flux model. The short-cut approach can be utilised for estimating effective osmotic pressures of other liquid food streams to be concentrated by forward osmosis, without the need of external measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call