Abstract

Soil-slurry bioreactor based bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soil was studied through laboratory and pilot-scale trials, in which the degradation mechanism was explored. Indigenous PAH-degrading consortium was firstly screened out and it degraded 80.5% of total PAHs in lab-scale bioreactors. Then a pilot-scale trial lasting 410 days was conducted in two bioreactors of 1.5 m3 to examine the operating parameters and validate the optimum running conditions. During the initial 200 days, the crucial running parameters affecting PAH removal were evaluated and selected. Subsequently, an average PAH removal rate of 93.4% was achieved during 15 consecutive batches (210 days) under the optimum running conditions. The kinetic analysis showed that the reactor under optimum conditions achieved the highest PAH degradation rate of 0.1795 day−1 and the shortest half-life of 3.86 days. Notably, efficient mass transfer of PAHs and high biodegradation capability by bioaugmented consortia in soil-slurry bioreactors were two key mechanisms for appreciable PAH removal performance. Under the optimal operating conditions, the degradation rate of low-molecular-weight (LMW) PAHs was significantly higher than high-molecular-weight (HMW) PAHs; when the mass transfer was limited, there was no significant difference between their degradation behaviors. Both microbial co-metabolism and collaborative metabolism might occur when all PAHs demonstrated low degradation rates. The findings provide insightful guidance on the future assessment and remediation practices of PAH-contaminated sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call