Abstract

This work aimed to study a pilot-scale sulfur-limestone autotrophic denitrification biofilter (SLADB) to remove nitrogen from municipal tailwater. The capacity of nitrogen removal and spatial distribution of microbial community at low temperature condition were analyzed. Low temperature inhibits nitrogen removal; while prolonging hydraulic retention time (HRT) increased nitrogen removal efficiency. TN and NO3−-N removal efficiency reached 81.1% and 85.3%, respectively, with HRT of 18 h at the temperature ranging from 6.4 to 9.8 °C. Proteobacteria and Chloroflexi were two dominant phyla. Along the reactor, class β-proteobacteria and ε-proteobacteria decreased, while γ-proteobacteria and Acidobacteria increased. For genus classification, Thiobacillus, Sulfurimonas, and Ferritrophicum which promote sulfur autotrophic denitrification, decreased significantly. While Anaerolineae promoting heterotrophic denitrification increased obviously. Sphingobacteriia coexisted in SLADB and were beneficial to nitrogen removal. Microbial community spatial distribution patterns were related to nitrogen removal. This study achieved reliable pilot-scale application of SLADB under low temperature for municipal tailwater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call