Abstract

Background: Transcranial direct current stimulation (tDCS) is used as treatment for auditory verbal hallucinations (AVH). The theory behind the treatment is that tDCS increases activity in prefrontal cognitive control areas, which are assumed to be hypoactive, and simultaneously decreases activity in temporal speech perception areas, which are assumed to be hyperactive during AVH. We tested this hypofrontal/hypertemporal reversal theory by investigating anatomical, neurotransmitter, brain activity, and network connectivity changes over the course of tDCS treatment. Methods: A double-blind, randomized controlled trial was conducted with 21 patients receiving either sham or real tDCS treatment (2 mA) twice daily for 5 days. The anode was placed over the left dorsolateral prefrontal cortex (DLPFC) and the cathode over the left temporo-parietal cortex (TPC). Multimodal neuroimaging as well as clinical and neurocognitive functioning assessment were performed before, immediately after, and three months after treatment. Results: We found a small reduction in AVH severity in the real tDCS group, but no corresponding neuroimaging changes in either DLPFCD or TPC. Limitations: The study has a small sample size. Conclusion: The results suggest that the currently leading theory behind tDCS treatment of AVH may need to be revised, if confirmed by studies with larger N. Tentative findings point to the involvement of Broca’s area as a critical structure for tDCS treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.