Abstract

The current CoVid-19 crisis is revealing the strengths and the weaknesses of the world’s capacity to respond to a global health crisis. A critical weakness has resulted from the excessive centralization of the current biomanufacturing capacities, a matter of great concern, if not a source of nationalistic tensions. On the positive side, scientific data and information have been shared at an unprecedented speed fuelled by the preprint phenomena, and this has considerably strengthened our ability to develop new technology-based solutions. In this work, we explore how, in a context of rapid exchange of scientific information, plant biofactories can serve as a rapid and easily adaptable solution for local manufacturing of bioreagents, more specifically recombinant antibodies. For this purpose, we tested our ability to produce, in the framework of an academic lab and in a matter of weeks, milligram amounts of six different recombinant monoclonal antibodies against SARS-CoV-2 in Nicotiana benthamiana. For the design of the antibodies, we took advantage, among other data sources, of the DNA sequence information made rapidly available by other groups in preprint publications. mAbs were engineered as single-chain fragments fused to a human gamma Fc and transiently expressed using a viral vector. In parallel, we also produced the recombinant SARS-CoV-2 N protein and the receptor binding domain (RBD) of the Spike protein in planta and used them to test the binding specificity of the recombinant mAbs. Finally, for two of the antibodies, we assayed a simple scale-up production protocol based on the extraction of apoplastic fluid. Our results indicate that gram amounts of anti-SARS-CoV-2 antibodies could be easily produced in little more than 6 weeks in repurposed greenhouses with little infrastructure requirements using N. benthamiana as production platform. Similar procedures could be easily deployed to produce diagnostic reagents and, eventually, could be adapted for rapid therapeutic responses.

Highlights

  • The current pandemic is evidencing several weaknesses in our ability to respond to a global crisis, one of which is the insufficient and heavily centralized distribution of the world manufacturing capacity of bioproducts such as antibodies, vaccines, and other biological reagents, especially proteins

  • Six different antibody sequences were selected for recombinant production in N. benthamiana, following a plant deconstructed viral strategy based on Magnifection technology as described earlier (Marillonnet et al, 2005; see Table 1)

  • Four of those were directed against the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein, whereas the remaining two were directed against the N protein

Read more

Summary

Introduction

The current pandemic is evidencing several weaknesses in our ability to respond to a global crisis, one of which is the insufficient and heavily centralized distribution of the world manufacturing capacity of bioproducts such as antibodies, vaccines, and other biological reagents, especially proteins. Since it is economically impracticable to ensure readiness by maintaining inactive infrastructures during large periods of normality, the development of dual-use systems has been proposed, which would serve regular production needs in normal times but could be rapidly repurposed to strategic manufacturing requirements in times of crisis. Such adaptable infrastructures should be widespread to serve local demand in case of emergency. Transient expression of the transgene is often assisted by self-replicating deconstructed virus vectors that amplify the transgene dose, boosting protein production by several orders of magnitude (Gleba et al, 2004). The in-planta incubation times required to obtain maximum yield of recombinant protein are no more than 2 weeks

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call