Abstract

In the last decade, we observed a constantly growing number of Location-Based Services (LBSs) used in indoor environments, such as for targeted advertising in shopping malls or finding nearby friends. Although privacy-preserving LBSs were addressed in the literature, there was a lack of attention to the problem of enhancing privacy of indoor localization, i.e., the process of obtaining the users' locations indoors and, thus, a prerequisite for any indoor LBS. In this work we present PILOT, the first practically efficient solution for Privacy-Preserving Indoor Localization (PPIL) that was obtained by a synergy of the research areas indoor localization and applied cryptography. We design, implement, and evaluate protocols for Wi-Fi fingerprint-based PPIL that rely on 4 different distance metrics. To save energy and network bandwidth for the mobile end devices in PPIL, we securely outsource the computations to two non-colluding semi-honest parties. Our solution mixes different secure two-party computation protocols and we design size-and depth-optimized circuits for PPIL. We construct efficient circuit building blocks that are of independent interest: Single Instruction Multiple Data (SIMD) capable oblivious access to an array with low circuit depth and selection of the k-Nearest Neighbors with small circuit size. Additionally, we reduce Received Signal Strength (RSS) values from 8 bits to 4 bits without any significant accuracy reduction. Our most efficient PPIL protocol is 553x faster than that of Li et al. (INFOCOM'14) and 500× faster than that of Ziegeldorf et al. (WiSec'14). Our implementation on commodity hardware has practical run-times of less than 1 second even for the most accurate distance metrics that we consider, and it can process more than half a million PPIL queries per day.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.