Abstract

Quantitative magnetic resonance imaging (MRI) evidence of mediobasal hypothalamic (MBH) gliosis positively correlates with body mass index (BMI) in adults. This has neither been well explored in children nor have other brain regions involved in appetitive processing been tested for evidence of gliosis. Multi-site cross-sectional study in children to test for differences in quantitative T2 signal (measure of gliosis) by region and to assess relationships with age and BMI. Participants underwent brain MRI using the same equipment and protocol to quantify T2 relaxation time in six bilateral regions of interest (ROIs): putamen, caudate, ventral striatum, amygdala, hippocampus and MBH, and three control regions: white matter, motor cortex and dorsal hypothalamus. Thirty-one participants (61% female) were included in a combined sample from the University of Washington (N = 9) and John Hopkins University (N = 22). Mean age was 14 ± 3 years, and BMI z-score was 0.7 ± 1.1 (26% with obesity). No study site-related differences were seen in T2 relaxation time across all nine regions (chi2 (8): 9.46, P = .30). Regional differences in T2 relaxation time were present (P < .001). MBH presented longer T2 relaxation time, suggestive of gliosis, when compared to all regions (P < .001), including an intra-hypothalamic control. Physiological age-related declines in T2 relaxation times were found in grey matter ROIs, but not in the MBH (r = -0.14, P = .46). MBH was the only region with a positive correlation between T2 relaxation time and BMI z-score (r = 0.38, P = .03). In a multi-site study, pilot data suggest that quantitative MRI detected normal maturation-related brain variation as well as evidence that MBH gliosis is associated with increased adiposity in children.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.