Abstract

Mechanical fracture parameters were obtained for special fine-grained cement-based composites from three-point bending tests. A total of four sets of composite specimens were tested. All of the sets of composites were based on a general recipe and differ in the amount of high-strength aggregate and/or dispersed steel fibres present. Standardized prism specimens with a nominal size of 40 × 40 × 160 mm were used for the fracture tests after 131 days of curing. An initial notch was cut in the centre of the prisms with a depth approximately equal to one third of the specimen’s height. Three specimens from each set of composites were tested in the three-point bending fracture test configuration. Load versus midspan deflection diagrams were recorded. Experimentally obtained load vs displacement diagrams were corrected and analysed using the Effective Crack Model, the Work-of-Fracture method and an independent identification technique using numerical modelling. The most important mechanical fracture parameters, such as static modulus of elasticity, effective fracture toughness, specific fracture energy and effective tensile strength, were determined. Compressive and splitting tensile strength values were obtained from the halves of the specimens left over after the bending tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call