Abstract
Reliable and high throughput communication in Massive Multiple-Input Multiple-Output (MIMO) systems strongly depends on accurate channel estimation at the Base Station (BS). However, the channel estimation process in massive MIMO systems is vulnerable to pilot contamination attacks, which not only degrade the efficiency of channel estimation, but also increase the probability of information leakage. In this paper, we propose a defence mechanism against pilot contamination attacks using a deep-learning model, namely Generative Adversarial Networks (GAN), to detect invalid uplink connections at the BS. Training of the models is performed via legitimate data, which consists of received signals from valid users and real channel matrices. The simulation results show that the proposed method is able to detect the pilot contamination attack with 98% accuracy in the best scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.