Abstract

In the present paper, a new geostatistical parameterization technique is introduced for solving inverse problems, either in groundwater hydrology or petroleum engineering. The purpose of this is to characterize permeability at the field scale from the available dynamic data, that is, data depending on fluid displacements. Thus, a permeability model is built, which yields numerical flow answers similar to the data collected. This problem is often defined as an objective function to be minimized. We are especially focused on the possibility to locally change the permeability model, so as to further reduce the objective function. This concern is of interest when dealing with 4D-seismic data. The calibration phase consists of selecting sub-domains or pilot blocks and of varying their log-permeability averages. The permeability model is then constrained to these fictitious block-data through simple cokriging. In addition, we estimate the prior probability density function relative to the pilot block values and incorporate this prior information into the objective function. Therefore, variations in block values are governed by the optimizer while accounting for nearby point and block-data. Pilot block based optimizations provide permeability models respecting point-data at their locations, spatial variability models inferred from point-data and dynamic data in a least squares sense. A synthetic example is presented to demonstrate the applicability of the proposed matching methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.