Abstract

Per- and polyfluoroalkyl substances (PFAS) make up a large class of anthropogenic micropollutants prevalent in wastewater. Oxidative processes commonly used in wastewater potable reuse treatment may affect transformation of PFAS precursors, leading to elevated concentrations of perfluorinated alkyl acids (PFAAs) that are significant health concerns. This work conducted a pilot-scale investigation to assess the influence of ozonation (O3) and ozone/hydrogen peroxide (O3/H2O2) advanced oxidation process (AOP), respectively, on the fate of PFAS in a wastewater effluent subjected to reuse. The study evaluated 40 target PFAS and associated precursors [based on the total oxidizable precursor (TOP) assay] under various treatment conditions, including different ozone doses (1.0-4.0 mg·L-1), H2O2 doses (0-0.20 mg·L-1), and contact time (0-20 min). Results indicated that short-chain (C3-C7) PFAAs dominated in concentrations, while overall PFAA concentrations were elevated by both oxidative treatment processes, particularly after high-dose ozonation treatment. TOP assays revealed that there were considerable amounts of PFAA precursors in the reuse wastewater, and their concentrations were decreased after the oxidative treatment with an increase of some of the PFAAs. This pilot study demonstrated that ozone and ozone-based AOP treatments can have a moderate influence on the transformation of PFAS and increase in PFAA levels under practical conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.