Abstract

In this paper, pilot-aided in-phase and quadrature-phase (IQ) imbalance compensation for orthogonal frequency division multiplexing (OFDM) systems operating over doubly selective channels is addressed. Based on a reformulated system model and the least squares (LS) criterion, a joint IQ imbalance and channel estimation method is developed, and the corresponding compensation scheme is also proposed. Moreover, to further enhance the compensation performance, an iterative compensation algorithm is derived via an expectation-maximization (EM) algorithm. Simulation results show that the iterative compensation algorithm initialized by the proposed LS compensation scheme converges in a few iterations and its performance after convergence is close to the ideal case with perfect IQ imbalance and channel state information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.