Abstract
AbstractAs pilling in textiles originates from many factors, the kinetic of pilling formation play an important role in the investigation and approaches of pilling. The single jersey‐knitted lyocell fabrics were treated with different alkaline solution concentrations and submitted to Rapid Pilling Test—a wet‐state Martindale test for cellulosic fabrics performed with increasing abrasion cycles. After each type of cycles, the pilling density was microscopically counted, and then pilling was visually rated. The changes in fiber properties were followed by water retention values (WRV), fibers swelling, fiber wet abrasion resistance (NSF), and fibers tenacity/elongation in wet and in dry states. The kinetics of pill formation—quantified by pills/cm2—occurred in the following steps: pills are promptly formed at first abrasion cycles, reached the pill plateau cycles, and are self‐removed from the fabric surface. The untreated and alkali‐treated lyocell fabrics followed a similar trend of pill formation. However, the pilling propensity is distinct depending on the concentrations. The changes in the swollen state of fiber properties and fiber–fiber friction mainly determined the pill kinetics in lyocell fabrics. The kinetic model aims to figure out the pilling mechanism and the appropriate treatment for pilling resistance. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.