Abstract
Photodynamic therapy (PDT) has emerged as a promising and spatiotemporally controllable cancer treatment modality. However, serious skin photosensitization during the PDT process limits the clinical application of PDT. Thus, the construction of "smart" and multifunctional photosensitizers has attracted substantial interest. Herein, we develop a mitochondria-targeting and pH-switched hybrid supramolecular photosensitizer by the host-guest interaction. The PDT efficacy of supramolecular photosensitizers can be quenched by the Förster resonance energy transfer (FRET) effect during long circulation and activated by the dissociation of supramolecular photosensitizers in an acidic tumor microenvironment, benefitting from the dynamic feature of the host-guest interaction and pH responsiveness of the water-soluble pillar[5]arene on gold nanoparticles. The rational integration of mitochondria-targeting and reductive glutathione (GSH) elimination in the hybrid switchable supramolecular photosensitizer prolongs the lifetime of reactive oxygen species generated in the PDT near mitochondria and further amplifies the PDT efficacy. Thus, the facile and versatile construction of switchable supramolecular photosensitizer offers not only the targeted and precise phototherapy but also high therapeutic efficacy, which would provide a new path for the clinic application of PDT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.