Abstract

The k-Fibonacci sequence starts with the values (a total of k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we find all integers c having at least two representations as a difference between a k-Fibonacci number and a Pell number. This paper continues and extends the previous work of [J.J. Bravo, C.A. Gómez, and J.L. Herrera, On the intersection of k-Fibonacci and Pell numbers, Bull. Korean Math. Soc. 56(2) (2019), pp. 535–547; S. Hernández, F. Luca, and L.M. Rivera, On Pillai's problem with the Fibonacci and Pell sequences, Soc. Mat. Mex. 25 (2019), pp. 495–507 and M.O. Hernane, F. Luca, S.E. Rihane, and A. Togbé, On Pillai's problem with Pell numbers and powers of 2, Hardy- Ramanujan J. 41 (2018), pp. 22–31].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.