Abstract
BackgroundThe global spread of bacterial resistance has given rise to a growing interest in new anti-bacterial agents with a new strategy of action. Pilicides are derivatives of ring-fused 2-pyridones which block the formation of the pili/fimbriae crucial to bacterial pathogenesis. They impair by means of a chaperone-usher pathway conserved in the Gram-negative bacteria of adhesive structures biogenesis. Pili/fimbriae of this type belong to two subfamilies, FGS and FGL, which differ in the details of their assembly mechanism. The data published to date have shown that pilicides inhibit biogenesis of type 1 and P pili of the FGS type which are encoded by uropathogenic E. coli strains.ResultsWe evaluated the anti-bacterial activity of literature pilicides as blockers of the assembly of a model example of FGL-type adhesive structures, – the Dr fimbriae encoded by a dra gene cluster of uropathogenic Escherichia coli strains. In comparison to the strain grown without pilicide, the Dr+ bacteria cultivated in the presence of the 3.5 mM concentration of pilicides resulted in a reduction of 75 to 87% in the adherence properties to CHO cells expressing Dr fimbrial DAF receptor protein. Using quantitative assays, we determined the amount of Dr fimbriae in the bacteria cultivated in the presence of 3.5 mM of pilicides to be reduced by 75 to 81%. The inhibition effect of pilicides is concentration dependent, which is a crucial property for their use as potential anti-bacterial agents. The data presented in this article indicate that pilicides in mM concentration effectively inhibit the adherence of Dr+ bacteria to the host cells, – the crucial, initial step in bacterial pathogenesis.ConclusionsStructural analysis of the DraB chaperone clearly showed it to be a model of the FGL subfamily of chaperones. This permits us to conclude that analyzed pilicides in mM concentration are effective inhibitors of the assembly of adhesins belonging to the Dr family, and more speculatively, of other FGL-type adhesive organelles. The presented data and those published so far permit to speculate that based on the conservation of chaperone-usher pathway in Gram-negative bacteria , the pilicides are potential anti-bacterial agents with activity against numerous pathogens, the virulence of which is dependent on the adhesive structures of the chaperone-usher type.
Highlights
The global spread of bacterial resistance has given rise to a growing interest in new anti-bacterial agents with a new strategy of action
Bacterial pathogenesis is a complex process which has been well studied in the case of urinary tract infections (UTIs) mediated by uropathogenic Escherichia coli (UPEC) expressing type 1 and P pili
The following aspects gave rise to the choice of compounds 1 and 2 for our studies: 1) These compounds belonging to the first generation of pilicides are the most potent inhibitors of P and type 1 pili biogenesis and were considered as lead compounds for further structural modifications [34]; 2) There are many data describing activity of these compounds as blockers of P and type 1 pili assembly including biological assays on whole bacterial cells, in vitro evaluation of pilicide affinity to the chaperone molecules and crystallographic data describing pilicide binding to the chaperone [21,23,24,34,35,36]; and 3) The pilicides described so far were originally constructed and subsequently modified on the basis of structural data describing the PapD and FimC chaperones [22]
Summary
The global spread of bacterial resistance has given rise to a growing interest in new anti-bacterial agents with a new strategy of action. Sequence and structural data comparisons allow the family of periplasmic chaperones to be divided into two subfamilies on the basis of the length of the loop connecting β-strand F1 with the donor G1 strand, the FGL and FGS subfamilies having a long and a short loop, respectively [15,16] This loop is an important structural element which, in the chaperone-subunit complex, extends the acceptor cleft binding motif of the chaperone G1 donor strand. The FGL chaperones assemble organelles composed of only one type of protein subunit and, optionally, the second minor tip subunit [12,13] They are characterized by a thin fimbrial, amorphous or capsule-like morphology. The FGL organelles belong to the γ3-monophyletic group, while the FGS can be divided into five clades: γ1, γ2, γ4, κ and π [20]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.