Abstract

Cloud computing platforms are now constructed as distributed, modular systems of cloud services, which enable cloud users to manage their cloud resources. However, in current cloud platforms, cloud services fully trust each other, so a malicious user may exploit a vulnerability in a cloud service to obtain unauthorized access to another user's data. To date, over 150 vulnerabilities have been reported in cloud services in the OpenStack cloud. Research efforts in cloud security have focused primarily attacks originating from user VMs or compromised operating systems rather than threats caused by the compromise of distributed cloud services, leaving cloud users open to attacks from these vulnerable cloud services. In this paper, we propose the Pileus cloud service architecture, which isolates each user's cloud operations to prevent vulnerabilities in cloud services from enabling malicious users to gain unauthorized access. Pileus deploys stateless cloud services on demand to service each user's cloud operations, limiting cloud services to the permissions of individual users. Pileus leverages the decentralized information flow control (DIFC) model for permission management, but the Pileus design addresses special challenges in the cloud environment to: (1) restrict how cloud services may be allowed to make security decisions; (2) select trustworthy nodes for access enforcement in a dynamic, distributed environment; and (3) limit the set of nodes a user must trust to service each operation. We have ported the OpenStack cloud platform to Pileus, finding that we can systematically prevent compromised cloud services from attacking other users' cloud operations with less than 3% additional latency for the operation. Application of the Pileus architecture to Open-Stack shows that confined cloud services can service users' cloud operations effectively for a modest overhead.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.