Abstract

This paper presents a new method for analyzing the nonlinear response of a single, vertical pile with the circular cross-section under torque in layered soils. The nonlinear stress-strain relationships of both soil-pile interface and soil are approximated by the hyperbolic model, whereas the pile material is elastic. The torsional spring stiffness of the soil-pile interface and the soil are determined by traditionally available methods. A four-node finite element model for the soil-pile interface is proposed to represent nonlinear behaviors of the soil-pile interface and the soil, separately. A new iterative scheme for nonlinear analysis of a single pile under torque is also developed that avoids having to solve a large number of simultaneous equations found in traditional solution schemes. The new solution method is based on the tangential stiffness of the soil-pile interface and soil springs, which are determined at each load step. From this solution scheme, an equivalent stiffness of the soil-pile-interface system of each pile element is calculated from the bottom element to the top element while torque and angle of twist are calculated from the top to the bottom elements. The solution gives the distribution of the angle of twist and torque along the pile, and the equivalent stiffness of the soil-pile system and torque-angle of twist curves at any depth. The solution method can be easily applied to the practice field in nonlinear analysis and in designing a single pile under torque in layered soils. The analysis results using the new solution scheme compared well with the results from other analytical methods studied by previous researchers. The proposed method is also used to predict the behavior of two full-scale piles under torques. The predictions are in good to excellent agreement with measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.