Abstract

Scour can increase the earthquake-induced damage in pile group foundations. Quantifying the parameter sensitivity of the seismic performance for scoured pile group foundations is essential for the optimal design and retrofit of bridges located in seismic-prone regions. Such quantification requires numerical models that are computationally efficient and accurate in describing the mechanical behavior associated with the complex soil–foundation–structure interaction of these systems. This study proposes an efficient finite-element model (FEM) of pile groups based on a beam on the nonlinear Winkler foundation approach. This FEM uses asymmetric p-multipliers to describe the different soil resistance exerted on leading and trailing piles when applying cyclic lateral loads. The proposed FEM is validated by comparing the numerical response with the experimental measurements taken from a quasi-static test available in the literature and is used to perform an extensive parametric sensitivity analysis to quantify the response sensitivity to 11 structural and soil parameters. Tornado diagrams are employed to identify an importance ranking of these parameters on the seismic performance of scoured pile groups. The obtained results indicate that the proposed FEM is able to capture both the global and local structural responses of pile group foundations. The parametric sensitivity analysis shows that pile group foundations have considerable ductility capacity. Pile diameter and axial load ratio of piles are the most important parameters for the seismic performance of pile groups. Increasing the pile diameter is the most efficient approach to improve the seismic performance of a pile group when considering scour effects. The seismic performance of a scoured pile group deteriorates with increasing piles’ axial load ratio. For a deep pile group foundation, seismic performance is very little sensitive to pile length and relative density of sand. Based on the results of the parametric analysis, recommendations are proposed for the seismic design of pile group foundations with scour effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call