Abstract

A series of centrifuge model tests has been conducted to investigate the behavior of a single pile subjected to excavation-induced soil movements behind a stable retaining wall in clay. The results reveal that after the completion of soil excavation, the wall and the soil continue to move and such movement induces further bending moment and deflection on an adjacent pile. For a pile located within 3 m behind the wall where the soil experiences large shear strain (>2%) due to stress relief as a result of the excavation, the induced pile bending moment and deflection reach their maximum values sometime after soil excavation and thereafter decrease slightly with time. For a pile located 3 m beyond the wall, the induced pile bending moment and deflection continue to increase slightly with time after excavation until the end of the test. A numerical model developed at the National University of Singapore is used to back-analyze the centrifuge test data. The method gives a reasonably good prediction of the induced bending moment and deflection on a pile located at 3 m or beyond the wall. For a pile located at 1 m behind the wall where the soil experiences large shear strain (>2%) due to stress relief resulting from the excavation, the calculated pile response is in good agreement with the measured data if the correct soil shear strength obtained from postexcavation is used in the analysis. However, if the original soil shear strength prior to excavation is used in the analysis, this leads to an overestimation of the maximum bending moment of about 25%. The practical implications of the findings are also discussed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.