Abstract

BackgroundRecent genomic evidence suggests frequent phosphatidylinositide 3-kinase (PI3K) pathway activation in human papillomavirus (HPV) positive oropharyngeal squamous cell carcinoma. Mutations/amplification of the gene encoding p110α catalytic subunit of phosphoinositide 3-kinase (PIK3CA), loss of phosphatase and tensin homolog (PTEN) and HRAS mutations are known to activate PI3K pathway.Methods and resultsPIK3CA mutations were identified by Sanger sequencing in 23 of 75 (31%) HPV-positive oropharyngeal carcinomas, including exon 9 (p.E545K [n = 10] and p.E542K [n = 5]) or exon 20 (p.H1047Y, n = 2) mutations. Five rare and one novel (p.R537Q) PIK3CA mutations were identified. HRAS mutation (p.Q61L) was detected in 1 of 62 tested cases. PIK3CA amplification by fluorescence in situ hybridization (FISH) was identified in 4 cases (4/21, 20%), while PTEN loss was seen in 7 (7/21, 33%) cases (chromosome 10 monosomy [n = 4], homozygous deletion [n = 3]).ConclusionsOverall, genetic alterations that likely lead to PI3K pathway activation were identified in 34 of 75 cases (45%) and did not correlate with disease specific survival. These findings offer a molecular rationale for therapeutic targeting of PI3K pathway in patients with HPV-positive oropharyngeal carcinoma.

Highlights

  • Recent genomic evidence suggests frequent phosphatidylinositide 3-kinase (PI3K) pathway activation in human papillomavirus (HPV) positive oropharyngeal squamous cell carcinoma

  • Overall, genetic alterations that likely lead to PI3K pathway activation were identified in 34 of 75 cases (45%) and did not correlate with disease specific survival

  • These findings offer a molecular rationale for therapeutic targeting of PI3K pathway in patients with HPV-positive oropharyngeal carcinoma

Read more

Summary

Introduction

Recent genomic evidence suggests frequent phosphatidylinositide 3-kinase (PI3K) pathway activation in human papillomavirus (HPV) positive oropharyngeal squamous cell carcinoma. Mutations/amplification of the gene encoding p110α catalytic subunit of phosphoinositide 3-kinase (PIK3CA), loss of phosphatase and tensin homolog (PTEN) and HRAS mutations are known to activate PI3K pathway. The phosphatidylinositide 3-kinase (PI3K) pathway is activated in about half of head and neck squamous cell carcinomas (SCC) by a number of mechanisms, including mutation or amplification of the gene encoding p110α catalytic subunit of phosphoinositide 3-kinase (PIK3CA) [1,2,3,4]. In addition to PIK3CA mutations and/or amplification, PI3K pathway may be activated due to phosphatase and tensin homolog (PTEN) deletion, a known negative regulator of the PI3K signaling pathway [18]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call