Abstract

Simple SummaryThe world population is growing, and for this reason, it is very important to ensure increased agricultural production in a sustainable and eco-friendly manner. The aim of this study was to apply a combination of newly isolated antimicrobial characteristic possessing lactic acid bacteria (LAB) strains for local stock (rapeseed meal) fermentation and to evaluate the influence of changing an extruded soya to biomodified rapeseed meal in a feed recipe on piglet feces microbiota, health parameters, growth performance, and ammonia emission. The 36-day experiment was conducted using 25-day-old Large White/Norwegian Landrace (LW/NL) piglets, which were randomly distributed into two groups: a control group fed with a basal diet and a treated group fed with a fermented diet (500 g/kg of total feed). Changing from an extruded soya to fermented rapeseed meal led to desirable changes in piglets’ fecal microbiota (there was more than a four-fold higher Lactobacillus count compared to the control group). There was also a 20.6% reduction in ammonia emission in the treated group section. Finally, by changing from extruded soya to less expensive rapeseed meal and applying a fermentation model with selected LAB combination, piglets were fed without any undesirable changes in health and growth performance, as well as in a more sustainable manner.The aim of this study was to apply newly isolated antimicrobial characteristic possessing lactic acid bacteria (LAB) starters (Lactobacillus plantarum LUHS122, Lactobacillus casei LUHS210, Lactobacillus farraginis LUHS206, Pediococcus acidilactici LUHS29, L. plantarum LUHS135, and Lactobacillus uvarum LUHS245) for local stock (rapeseed meal) fermentation and to evaluate the influence of changing from an extruded soya to biomodified local stock in a feed recipe on piglets’ fecal microbiota, health parameters, growth performance, and ammonia emission. In addition, biomodified rapeseed meal characteristics (acidity and microbiological) were analyzed. The 36-day experiment was conducted using 25-day-old Large White/Norwegian Landrace (LW/NL) piglets, which were randomly distributed into two groups: a control group fed with basal diet and a treated group fed with fermented feed (500 g/kg of total feed). The study showed that the selected LAB starter combination can be recommended for rapeseed meal fermentation (viable LAB count in fermented feed 8.5 ± 0.1 log10 CFU/g and pH 3.94 ± 0.04). At the beginning of the in vivo experiment, the microbial profiles in both piglet groups were very similar: The highest prevalence was Prevotella (34.6–38.2%) and Lactobacillus (24.3–29.7%). However, changing from an extruded soya to fermented rapeseed meal in the feed recipe led to desirable changes in piglets’ fecal microbiota. There was a more than four-fold higher Lactobacillus count compared to the control group. Furthermore, there was significantly lower ammonia emission (20.6% reduction) in the treated group section. Finally, by changing from an extruded soya to cheaper rapeseed meal and applying the fermentation model with the selected LAB combination, it is possible to feed piglets without any undesirable changes in health and growth performance, as well as in a more sustainable manner.

Highlights

  • Considering that the world population is growing, it is crucial to ensure increased agricultural industry production in a more sustainable and eco-friendly manner [1]

  • Feed fermentation is associated with improved nutritional value, a high number of viable lactic acid bacteria (LAB), and lower pH, as well as a high concentration of organic acids [15,34]

  • Fermentation protects feed from spoilage and non-desirable microorganism contamination, factors that ensure biosafety of the biomodified stock [35]

Read more

Summary

Introduction

Considering that the world population is growing, it is crucial to ensure increased agricultural industry production in a more sustainable and eco-friendly manner [1]. The optimization of animal-based production (reduction of feed prices by using local stock, looking for alternative stock, increasing nutritional value, reduction of greenhouse gas emissions, etc.) is a big challenge for this industry, as well as for scientists. Dietary manipulation may positively affect pig growth and reduce production costs. It is recognized as a possible pollution mitigation strategy [3]. A prominent challenge comes with bans on the use of antibiotics in animal nutrition

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call