Abstract

Camelina sativa is an oil seed crop which can be grown on marginal lands. Camelina seed oil is rich in omega-3 fatty acids (>35%) and γ-tocopherol but is also high in erucic acid and glucosinolates. Camelina meal, is the by-product after the oil has been extracted. Camelina meal was fed to 28 d old weaned pigs at 3.7% and 7.4% until age 56 d. The camelina meal supplements in the soy based diets, improved feed efficiency but also significantly increased the liver weights. Gene expression analyses of the livers, using intra-species microarrays, identified increased expression of phase 1 and phase 2 drug metabolism enzymes. The porcine versions of the enzymes were confirmed by real time PCR. Cytochrome 8b1 (CYP8B1), aldehyde dehydrogenase 2 (Aldh2), and thiosulfate transferase (TST) were all significantly stimulated. Collectively, these genes implicate the camelina glucosinolate metabolite, methyl-sulfinyldecyl isothiocyanate, as the main xeniobiotic, causing increased hepatic metabolism and increased liver weight.

Highlights

  • Camelina sativa, a member of the family Brassicaceae is related to rapeseed [1]

  • The concentration of glucosinolates was measured to be ~23.70 μmol/g in the camelina meal using a chromatography method [25]. This content is significantly higher than the average value of 7.8 μmol glucosinolate /g of meal from modern conventional varieties of canola [15]

  • Camelina sativa has high erucic acid and high glucosinolate content but it can be grown on marginal land and has good oil yield

Read more

Summary

Introduction

A member of the family Brassicaceae is related to rapeseed [1]. It has commercial value as an oil seed crop for biofuels and biolubricants and can be grown on marginal lands [2]. Camelina seed has an oil content of over 40% (dry weight) and this oil is high in omega-3 fatty acids, gamma tocopherol [3] and in the monounsaturated omega-9 fatty acid, erucic acid (C22:1 ω-9) [4]. The Camelina meal still has a problem because, after the oil has been extracted, it can have a total glucosinolate content of ~ 24 μmol/g [5]. In canola meal, when total glucosinolate content is higher than 15 μmol/g of feed, it will reduce feed intake and growth in finishing pigs [6,7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call