Abstract

Mesenchymal stem cells (MSCs) are multipotent progenitor cells that represent a promising approach in the field of regenerative medicine; however, this potential diminishes with senescence. Pigment epithelium-derived factor (PEDF) gives some protection by reducing oxidative stress, which is known to accelerate cellular senescence. Thus we hypothesized that PEDF could delay senescence during MSC expansion by reducing oxidative stress. Proliferation and differentiation potentials, oxidative stress, senescence and p53/p16 expressions have been examined. In MSCs cultured under normoxic conditions treated with PEDF, proliferative lifespan in vitro was significantly increased compared with control group not given PEDF, with ∼10 additional population doublings (PD) occurring before terminal growth arrest. Most of the MSCs cultured under normoxic conditions ceased to proliferate after 20-28 PD, while few senescent cells were found in the hypoxic, PEDF-hypoxic and PEDF-normoxic cultures; this was associated with downregulation of p53 and p16 expression and decreased oxidative stress. PEDF also preserved differentiation potentials of MSCs compared with the control group. Thus PEDF suppression of oxidative stress delays cellular senescence and allows greater expansion of MSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.