Abstract

In utero electroporation (IUE) is an effective transfection method for delivering plasmid DNA into neural progenitor cells and neurons of mammalian neocortex in vivo. Although IUE is effective at delivering multiple DNA plasmids into populations of cells, unfortunately plasmids delivered into neural progenitor cells remain largely episomal and often get inactivated or lost after cell division. This results in a form of "birthdate" labeling in which only the cell types that do not undergo a second cell division continue to express the transfected plasmids. This limits the application of IUE with standard plasmids and precludes its use in experiments where manipulating or labeling the complete cell lineage of a progenitor is desired. To circumvent this episomal loss of plasmid in IUE, we have used a binary piggyBac transposon system to induce nonviral genomic integration of transgenes. These transgenes do not appear to inactivate after cell division, and this results in stable somatic cellular transgenesis of neurons and glia. Like standard IUE, the system can be used with multiple combinations of plasmids to achieve multicolor labeling and both loss-of-function and gain-of-function manipulations. In this protocol, we describe the method for delivering a binary piggyBac transposon plasmid system by IUE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.