Abstract
In this paper, the multi-UAV cooperative target searching problem is investigated and a close loop path planning method is developed for UAVs in uncertain environment. The proposed method includes two consecutive parts, the multi-UAV cooperative target search algorithm developed based on cooperative pigeon-inspired optimisation (CPIO) and the base returning algorithm for each UAV based on artificial potential field (APF) method. Firstly, a concerned regional environment and the initial search probability map models are established. Then, by applying the rolling prediction strategy, the cooperative target search paths for multiple UAVs are generated by utilising the proposed CPIO. With this method, UAVs can reinforce target search in the key areas in a cooperative way and avoid flying into the no-fly zones. In the meanwhile, the Bayesian theorem is used to constantly update the search probability map in each search step. Finally, at the end of the target search phase, an optimised safe path is generated for each UAV returning back to its original by using the APF method. Simulations are performed and the results demonstrate that the proposed approach is effective for multiple UAVs carrying out cooperative target search task in a complex environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Bio-Inspired Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.