Abstract

Holstein rumen-cannulated cows [n=7; initial body weight (BW) 640.56±71.43kg] were fed a corn silage basal diet with 1 of 3 concentrates (C=control; P10=10% pigeon peas; P20=20% pigeon peas). Cows were randomly assigned to treatments in a replicated 3×3 Latin square and individually fed using Calan gates. Each experimental period was 21 d with 7 d for adaption and 14 d for sample collection. Ruminal fluid samples were taken the last day of each experimental period and analyzed for pH, ammonia, long-chain fatty acids, and volatile fatty acids (VFA). Consecutive a.m. and p.m. milk samples were taken during the last 2 wk of the 21-d period and analyzed for fat, protein, long-chain fatty acids, and somatic cell count. Dry matter intake (kg/d) was reduced during the second period and was greater for P10 diets. Milk protein was greater for cows fed P20 compared with P10. Energy-corrected milk was greater for cows fed the control diet compared with P10. Treatment had no effect on milk yield. Ruminal fluid pH decreased over sampling times; however, pH remained at or above 5.5. Diets did not affect ruminal fluid pH; however, pH was different for sampling periods. Ruminal ammonia decreased until 8h postfeeding at which time it peaked consistent with changes in ammonia concentrations that usually peak 3 to 5h postfeeding on diets high in plant proteins. Dietary treatments altered ruminal fluid VFA with reduced concentrations of acetate and greater concentrations of propionate for control diet, resulting in reduced acetate:propionate ratio. Isobutyrate exhibited an hour by treatment interaction, in which isobutyrate decreased until 8h postfeeding and then tended to be greater for P10 than for other treatments. Animals fed the P10 diet had greater concentrations of ruminal isovalerate. Ruminal cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid (CLA) isomers were not affected by dietary treatments. The P10 diet had greatest ruminal synthesis of cis-9,trans-11, but control cows had greatest ruminal synthesis of trans-10,cis-12. Milk CLA isomers were similar among treatments. Trends were observed for greater cis-9,trans-11 and trans-10,cis-12 for the P10 diet. Pigeon peas may be used as a protein supplement in dairy diets without affecting milk production, dry matter intake, or ruminal environment when they replace corn and soybean meal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call