Abstract

The absence of effective extracellular matrix to mimic the natural tumor microenvironment remains a significant obstacle in cancer research. Matrigel, abundant in various biological matrix components, is limited in its application due to its high cost. This has prompted researchers to explore alternative matrix substitutes. Here, we have investigated the effects of the extracellular matrix derived from pig small intestinal submucosa (ECM-SIS) in xenograft tumor modeling. Our results showed that the pig-derived ECM-SIS effectively promotes the establishment of xenograft tumor models, with a tumor formation rate comparable to that of Matrigel. Furthermore, we showed that the pig-derived ECM-SIS exhibited lower immune rejection and fewer infiltrating macrophages than Matrigel. Gene sequencing analysis demonstrated only a 0.5% difference in genes between pig-derived ECM-SIS and Matrigel during the process of tumor tissue formation. These differentially expressed genes primarily participate in cellular processes, biological regulation, and metabolic processes. These findings emphasize the potential of pig-derived ECM-SIS as a cost-effective option for tumor modeling in cancer research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.