Abstract

Bacteria display a variety of mechanisms to control plasmid conjugation. Among them, fertility inhibition (FI) systems prevent conjugation of co-resident plasmids within donor cells. Analysis of the mechanisms of inhibition between conjugative plasmids could provide new alternatives to fight antibiotic resistance dissemination. In this work, inhibition of conjugation of broad host range IncW plasmids was analyzed in the presence of a set of co-resident plasmids. Strong FI systems against plasmid R388 conjugation were found in IncF/MOBF12 as well as in IncI/MOBP12 plasmids, represented by plasmids F and R64, respectively. In both cases, the responsible gene was pifC, known also to be involved in FI of IncP plasmids and Agrobacterium T-DNA transfer to plant cells. It was also discovered that the R388 gene osa, which affects T-DNA transfer, also prevented conjugation of IncP-1/MOBP11 plasmids represented by plasmids RP4 and R751. Conjugation experiments of different mobilizable plasmids, helped by either FI-susceptible or FI-resistant transfer systems, demonstrated that the conjugative component affected by both PifC and Osa was the type IV conjugative coupling protein. In addition, in silico analysis of FI proteins suggests that they represent recent acquisitions of conjugative plasmids, i.e., are not shared by members of the same plasmid species. This implies that FI are rapidly-moving accessory genes, possibly acting on evolutionary fights between plasmids for the colonization of specific hosts.

Highlights

  • Bacteria display a series of mechanisms to control conjugative DNA transfer, as they do for any other physiological process (Getino and de la Cruz, 2017)

  • Transfer of IncW plasmids was systematically analyzed in the presence of a representative set of conjugative plasmids in donor bacteria

  • Either plasmid R388 or pIE321 were tested as prototype IncW conjugative systems

Read more

Summary

Introduction

Bacteria display a series of mechanisms to control conjugative DNA transfer, as they do for any other physiological process (Getino and de la Cruz, 2017). If properly manipulated, these mechanisms may be useful to prevent dissemination of antibiotic resistance determinants, which are mainly transferred by conjugation (Waters, 1999; Norman et al, 2009). Natural means to inhibit conjugation can be encoded by recipient bacteria as defense systems against potentially harmful invading genomes, as are the cases of restriction-modification (Wilkins, 2002) or CRISPR-Cas systems (Marraffini and Sontheimer, 2008). Mechanisms to control conjugative transfer are present in plasmids themselves. All conjugative plasmids code for exclusion systems that act in recipient bacteria to prevent competition between identical plasmid backbones, block uneconomical excess of conjugative transfer, and protect recipients from lethal zygosis (GarcillanBarcia and de la Cruz, 2008).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call