Abstract

Mutations in Phytochrome Interacting Factors (PIFs) induce a conversion of the endodermal amyloplasts necessary for gravity sensing to plastids with developed thylakoids accompanied by abnormal activation of photosynthetic genes in the dark. In this study, we investigated how PIFs regulate endodermal plastid development by performing comparative transcriptome analysis. We show that both endodermal expression of PIF1 and global expression of the PIF quartet induce transcriptional changes in genes enriched for nuclear-encoded photosynthetic genes such as LHCA and LHCB. Among the 94 shared differentially expressed genes identified from the comparative transcriptome analysis, only 14 genes are demonstrated to be direct targets of PIF1, and most photosynthetic genes are not. Using a co-expression analysis, we identified a direct target of PIF, whose expression pattern shows a strong negative correlation with many photosynthetic genes. We have named this gene REPRESSOR OF PHOTOSYNTHETIC GENES1 (RPGE1). Endodermal expression of RPGE1 rescued the elevated expression of photosynthetic genes found in the pif quadruple (pifQ) mutant and partly restored amyloplast development and hypocotyl negative gravitropism. Taken together, our results indicate that RPGE1 acts downstream of PIF1 in the endodermis to repress photosynthetic genes and regulate plastid development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.