Abstract

Piezoelectricity, a phenomenon known for centuries, is an effect that is about the production of electrical potential in a substance as the pressure on it changes. The most well known material that has piezoelectric effect is the provskite structured Pb(Zr, Ti)O 3 (PZT), which has found huge applications in electromechanical sensors, actuators and energy generators. But PZT is an electric insulator and it is less useful for building electronic devices. Wurtzite structures, such as ZnO, GaN, InN and ZnS, also have piezoelectric properties but they are not extensively used as much as PZT in piezoelectric sensors and actuators due to their small piezoelectric coefficients. In fact, due to the polarization of ions in a crystal that has non-central symmetry, a piezoelectric potential (piezopotential) is created in the crystal by applying a stress. For materials such as ZnO, GaN, InN in the wurtzite structure family, the effect of piezopotential to the transport behavior of charge carriers is significant due to their multiple functionalities of piezoelectricity, semiconductor and photon excitation. By utilizing the advantages offered by these properties, a few new fields have been created. Electronics fabricated by using inner-crystal piezopotential as a “gate” voltage to tune/control the charge transport behavior is named piezotronics, with applications in strain/force/pressure triggered/controlled electronic devices, sensors and logic units. Piezo-phototronic effect is a result of three-way coupling among piezoelectricity, photonic excitation and semiconductor transport, which allows tuning and controlling of electro-optical processes by strain induced piezopotential. The objective of this talk is to introduce the fundamentals of piezotronics and piezo-phototronics and to give an updated progress about their applications in energy science (LED, solar cell), electronics and sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.