Abstract

Low-dimensional piezoelectric semiconductor nanomaterials, such as ZnO and GaN, have superior mechanical properties and can be integrated into flexible devices that can be subjected to large strain. More importantly, the coupling between piezoelectric polarization and semiconductor properties (for example, electronic transport and photoexcitation) in these materials gives rise to unprecedented device characteristics. This has increased research interest in the emerging fields of piezotronics and piezo-phototronics, which offer new means of manipulating charge-carrier transport, generation, recombination or separation in the controlled operation of flexible devices through the application of external mechanical stimuli. We review the recent progress in advancing our fundamental understanding and in realizing practical applications of piezotronics and piezo-phototronics, and provide an in-depth discussion of future research directions. Piezotronics and piezo-phototronics offer new means of implementing adaptive electronics and optoelectronics, taking advantage of the coupling between piezoelectric polarization and semiconductor properties in piezoelectric semiconductor nanomaterials. This Review discusses the recent progress in piezotronics and piezo-phototronics, as well as future research directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call