Abstract

For the materials that simultaneously exhibit piezoelectric and semiconductor properties, such as wurtzite ZnO, GaN and InN, as well as two-dimensional single MoS2, piezoelectric charges induced by externally applied strain can tune/control carrier transport at a metal-semiconductor contact or semiconductor junction, which is named piezotronic effect. Metal-semiconductor-metal piezotronic transistors are key piezotronic nanodevices for electromechanical applications, and they are typical nonlinear elements. In this paper, a simplified current-voltage analysis solution of piezotronic transistors is developed, which can be used for circuit design and simulation. Furthermore, the typical nonlinear circuit: Chua’s circuit based on piezotronic transistors is simulated. We find that the output signal of the piezotronic transistor circuit can be switched and changed asymmetrically by externally applied strain. This study provides insight into the nonlinear properties of the piezotronic transistor, as well as guidance for piezotronic transistor nonlinear circuit application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.