Abstract

Ultrasound (US)-triggered sonodynamic therapy (SDT) based on semiconductor nanomaterials has attracted considerable attention for cancer therapy. However, most inorganic sonosensitizers suffer from low efficiency due to the rapid recombination of electron-hole pairs. Herein, the Cu2-xO-BaTiO3 piezoelectric heterostructure was fabricated as a sonosensitizer and chemodynamic agent, simultaneously, for improving reactive oxygen species (ROS) generation and cancer therapeutic outcome. Under US irradiation, the Cu2-xO-BaTiO3 heterojunction with a piezotronic effect exhibits high-performance singlet oxygen (1O2) and hydroxyl radical (•OH) generation to enhance SDT. Moreover, it possesses Fenton-like reaction activity to convert endogenous H2O2 into •OH for chemodynamic therapy (CDT). The integration of SDT and CDT substantially boosts ROS generation and cellular mitochondria damage, and the in vitro and in vivo results demonstrate high cytotoxicity and tumor inhibition on murine refractory breast cancer. This work realizes improvement in cancer therapy using piezoelectric heterostructures with piezotronic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.