Abstract

The resistance change with applied stress was measured for ruthenium-based metal–insulator–metal thick films under tensile and hydrostatic pressures over the temperature range −25 to +135 °C. The derived longitudinal, transverse, and hydrostatic piezoresistivity coefficients were corrected for elastic effects to yield the corresponding piezoresistivity coefficients and their temperature dependencies. The results clearly demonstrate for the first time a hydrostatic piezoresistivity coefficient that is sevenfold larger than the longitudinal component. Symmetry analysis is used to explain this phenomenon and to deduce additional piezoresistivity matrix elements and their degeneracy. In addition, pressure effects on electrical transport support a tunneling mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.