Abstract
Materials that change resistance after undergoing deformation have various types of applications as sensors. Among the materials that may be used for this purpose, there are some in which conducting particles are immersed in an isolating polymeric matrix. Carbon black (CB) particles have high electrical conductivity, allowing them to be included in a resin epoxy (EPX) matrix and resulting in an electrical conductor composite; this can be done even in the case of low volumetric fractions of CB. The goal of this work was crafting a conducting polymeric film that has piezoresistive behavior for utilization as strain sensors for low deformations. A relevant aspect of the film development was the search for a solvent to lower the viscosity of the EPX to enhance the homogeneity of the composite. Acetone showed good potential as the solvent for this composite. The sensor showed efficiency under small strain, especially when used with a substrate.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.