Abstract
Polymeric materials have been replacing other materials in various applications, from structural to electronic components. In particular, since the discovery of conducting polymers, the use of these materials is growing up in the manufacture of electronic components, such as organic light-emitting diodes, organic electrodes, energy storage devices and artificial muscles, among others. On the other hand, examples of sensors of conductive polymers based on the piezoresistive effect, with large potential for applications, are not sufficiently investigated. This work reports on the piezoresistive effect of an intrinsically conductive polymer, polyaniline, which was prepared in the form of thin films by spin coating on polyethylene terephthalate substrates. The relationship between electrical response and mechanical solicitations is presented for different preparation conditions. The values of the gauge factor ranges from 10 to 22 for different samples and demonstrates the viability of these materials as piezoresistive sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.