Abstract
The unique properties of conducting polymers make them ideally suited for applications in organic electronics, photovoltaics, and energy storage systems. Depending on the specific application, they can outperform metal-based electronics by cost, mechanical flexibility, molecular design opportunities, and environmental impact. Many composites of conducting polymers with polyanions can be processed in water. However, the facile processing of such composites comes at a cost of reduced conductivity. In this manuscript, electronic conductivity dependence on composition for a composite of polypyrrole (PPy) with carboxymethyl cellulose (CMC) has been studied. Secondary ion mass spectrometry and electron energy loss spectroscopy mapping indicate the formation of a nanostructure forming PPy-rich nanospheres with a CMC-rich surface coverage. This structure requires inter-particle electron conduction to occur via quantum tunneling. Variations in the tunneling distance are dependent on the applied pressure, giving rise to a pressure-dependent electronic conductivity and thus piezoresistance. This behavior opens new applications of conducting polymer composites in pressure-sensitive electronic devices, providing metal-free alternatives to quantum tunneling composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.