Abstract

The room-temperature longitudinal piezoresistance of n-type and p-type crystalline silicon along selected crystal axes is investigated under uniaxial compressive stresses up to 3 GPa. While the conductance (G) of n-type silicon eventually saturates at ≈ 45% of its zero-stress value (G(0)) in accordance with the charge transfer model, in p-type material G/G(0) increases above a predicted limit of ≈ 4.5 without any significant saturation, even at 3 GPa. Calculation of G/G(0) using ab initio density functional theory reveals that neither G nor the mobility, when properly averaged over the hole distribution, saturate at stresses lower than 3 GPa. The lack of saturation has important consequences for strained-silicon technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.