Abstract
Ferroelectric materials will generate an internal electric field when subjected to force, thus assisting to separate the photogenerated carriers. Here, a ferroelectric SrBi4Ti4O15/Ag2O p-n heterojunction catalyst is designed, inducing the remarkable enhancement of photocatalytic degradation performance by piezoelectric effect under the direct current electric field. The polarized SrBi4Ti4O15/Ag2O degrades 99.54 % Rhodamine B (RhB) within 6 min when exposed to light and ultrasonic vibration simultaneously, with an ultra-high degradation rate constant (k = 0.8949 min−1), which is 3.24 times of photocatalytic degradation rate (0.2765 min−1) and 17.38 times of the piezocatalytic degradation rate (0.0515 min−1). Moreover, SrBi4Ti4O15/Ag2O piezo-photocatalyst presents excellent degradation effect on methylene blue (MB), methyl violet (MV), methyl orange (MO) and tetracycline (TC). The piezoelectric effect induced by ultrasonic vibration provides a built-in electric field, which significantly enhances the separation of photoexcited carriers, consequently improving the photocatalytic degradation properties of SrBi4Ti4O15/Ag2O. This study provides a valuable reference for designing efficient photocatalysts by coupling photocatalysis and piezoelectric effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.