Abstract
Gallium nitride (GaN) exhibits various potential applications in optics and optoelectronics due to its outstanding physical characteristics, including a wide direct bandgap, strong deep-ultraviolet emission, and excellent electron transport properties. However, research on the piezoelectric and related properties of GaN nanosheets are scarce, as previous small-scale GaN investigations have mainly concentrated on nanowires and nanotubes. Here, we report a strategy for growing 2D GaN nanosheets using chemical vapor deposition on Ga/W liquid-phase substrates. Additionally, utilizing scanning probe techniques, it has been observed that 700 nm-thick GaN nanosheets demonstrate a piezoelectric constant of deff33 = 1.53 ± 0.21 pm V-1 and possess the capability to effectively modulate the Schottky barrier. The piezoelectric characteristics of 2D GaN are offering new options for innovative applications in various fields, including energy harvesting, electronics, sensing, and communications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.