Abstract

Piezoelectricity in low-dimensional materials and metal-semiconductor junctions has attracted recent attention. Herein, a 2D in-plane metal-semiconductor junction made of multilayer 2H and 1T' phases of molybdenum(IV) telluride (MoTe2 ) is investigated. Strong piezoelectric response is observed using piezoresponse force microscopy at the 2H-1T' junction, despite that the multilayers of each individual phase are weakly piezoelectric. The experimental results and density functional theory calculations suggest that the amplified piezoelectric response observed at the junction is due to the charge transfer across the semiconducting and metallic junctions resulting in the formation of dipoles and excess charge density, allowing the engineering of piezoelectric response in atomically thin materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.