Abstract

This paper presents an experimental and numerical characterization of a piezoelectric d36 shear-based torsion actuator made of xPb(Mg1/3Nb2/3)O3-(1-x)PbTiO3 (PMN-PT) single crystals embedded between Polydimethylsiloxane (PDMS) layers. The generated rate of twist value of the piezoelectric d36-mode PMN-PT single crystal composite torsion actuator was obtained using a laser vibrometer from the maximum detected transverse deflection measurement. The quasi–static torsion actuation experiments were conducted on the piezoelectric d36 torsion actuator by applying different AC voltages at 1 Hz. The experimental benchmark was further modelled by Finite Element (FE) code ABAQUS® using three dimensional (3D) piezoelectric finite elements. The experimental results and Finite Element computations showed good agreement. Findings reveal that more rate of twist is produced by PMN-PT single crystals in comparison to piezoceramic alternatives. This piezoelectric PMN-PT d36-mode composite torsion actuator can be effectively used in torsional deformation control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call